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Abstract

We present particle dynamics simulations for the response of magnetorheological
(MR) fluids upon application of a magnetic field. The particles motion is considered to
be governed by magnetic, hydrodynamic and repulsive interactions. Fluid-particle in-
teractions are accounted for via Stokes’ drag while inter-particle repulsions are modeled
through approximate hard-sphere rejections. In accordance with their greater signifi-
cance, on the other hand, (linear) magnetic interactions are fully simulated. The time
evolution is considered to be magnetically quasi-static and magnetostatic forces are de-
rived from the solution of (steady) Maxwell’s equations, recomputed at each instant in
time. For this we use a potential theoretic formulation where the boundary integral
equations are solved with a fast multipole approach. We show that the resulting nu-
merical codes can be effectively used to study a number of experimental observables
such as effective magnetic permeabilities and response time-scales which are of crucial
importance in the design of MR fluids.
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1 Introduction

Magnetorheological (MR) and electrorheological (ER) fluids constitute important classes of
“smart” controllable materials. The essential characteristic of MR (resp., ER) fluids is that
they may be reversibly transformed from a liquid state to that of a Bingham solid upon
application of a magnetic (resp., electric) field. Although the discovery of these materials
dates back to over half a century ago (Winslow [1947], [1949] for ER & Rabinow [1948]
for MR), their industrial realization had, until recently, proved elusive due, in part, to
the stringent stability and durability requirements that such applications demand. Indeed,
it was only a few years ago that commercially viable fluids of this type were achieved
(Carlson et. al. [1990], [1994] & Leventon [1993]) and controllable devices based on this
technology are now beginning to evolve (see www.mrfluid.com). For the most part, these
devices employ magnetic fluids as these present a number of advantages over their electric
counterparts. These include higher achievable yield stresses (20 to 50 times those attainable
with ER suspensions), lower voltage demands, a wider range of possible liquid carriers and

lower sensitivity to contaminants and extremes in temperature (Weiss et al. [1992], [1993a],
[1993b], Carlson at al. [1994], Jolly et. al. [1998a], [1998b]).

Typical ER and MR fluids consist of micron-sized electrically conducting or magnetically
permeable particles dispersed in a carrier oil. It is this composition that, in fact, results in
their field-dependent rheology: an applied field polarizes the particles which therefore move
to reduce the stored electromagnetic energy of the ensemble. An energetically favorable
arrangement consists of particle chains aligned in the direction of the applied field and this,
in turn, gives rise to a strong resistance to applied strains (on the order of 100kPa for MR
fluids), see e.g. Carlson et al. [1990], Weiss et al. [1992], Jolly et al. [1997], [1998a],
[1998b]. In an attempt at understanding the main factors affecting this so-called “MR
(or ER)-effect” and with a view to its possible enhancement for potential applications, a
myriad of experimental and theoretical studies have been carried out since the effect was
first recognized (see, e.g., Tao [1992], Bullough [1996] and references therein). The great
number of variables that influence this behavior, however, conspired against the derivation
of an accurate quantitative assessment of their relative importance since experiments could
only explore small fractions of parameter space and theoretical work had to rely on over-
simplified models. As it became practicable, on the other hand, it also became clear that
numerical simulations on more complete models could deliver substantial information for
the design of new or improved fluids. In particular, over the last decade, a number of
numerical studies were performed on particle dynamics models for ER fluids that have
sought to account for the different types of interactions (electric, hydrodynamic, Brownian,
etc) that arise in the presence of applied fields (Klingenberg et al. [1989], Hass [1993],
Hess and Weider [1996], Mohebi et al. [1996], Parthasarathy and Klingenberg [1996]). In
this manner, the qualitative features of a number of experimental observables (such as the
path of chain formation) were recreated and new insight was gained into the mechanisms
responsible for the ER effect.

In order to make these models numerically tractable, a number of simplifications had to
be performed. Some of them, such as neglecting Brownian forces, could be easily justified
on the basis of simple scaling arguments (see Sec. 2.2). Others, however, were only made for
computational convenience. In fact, such was the case, for instance, with the inter-particle
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electromagnetic forces as well as with their hydrodynamic behavior. Although these are
clearly the dominant effects within the system, their accurate mathematical representation
required what appeared to be a “practically impossible” (Bonnecaze and Brady [p. 2188,
1991]) solution of Stokes or Maxwell’s equations in a highly oscillatory geometry and were
therefore, in all of these treatments, replaced by point-dipole and Stokes drag approxima-
tions respectively. We intend to show here, on the other hand, that some recent advances in
the development of computational algorithms do indeed allow for an accurate and efficient
treatment of such oscillatory problems. While it is still certainly true that standard finite-
element or boundary-element calculations on these models (where each particle, or particle
boundary, would comprise several elements and where all of which would contribute to the
overall field) are well beyond today’s computational capabilities, we shall demonstrate that
such calculations become practicable through the use of a fast multipole method (FMM).

The basic idea behind FMM (Rokhlin [1985] Greengard & Rokhlin [1987] and Green-
gard [1988]) consists of using multipole expansions to calculate far-field contributions to a
slowly decaying (e.g., Newtonian) potential at any given point. This observation can, in
fact, be effectively used in a wide variety of (linear) potential calculations by appealing to
the iterative solution of the corresponding boundary integral equations (see Sec. 3). For
the present work we have initially implemented an FMM to handle the full (linear) electro-
magnetic interactions at each time step of a particle dynamics simulation (Sec. 3), while we
have kept with previous models in treating the hydrodynamics via Stokes drag. We note
however, that an analogous fast multipole approach can be used to solve the full Stokes
equations of fluid flow (Greengard & Kropinski [1999]). It should also be remarked that, in
accordance with their greater practical importance, our interest lies with MR fluids which,
in fact, we use for experimental validation (Sec. 4). While our model in its present state
would, in principle, equally apply to ER fluids, we suspect that our assumptions on the
dominance of electromagnetic and hydrodynamic forces constitutes a better approximation
in the case of MR composites, as is evidenced by their aforementioned enhanced stability
properties. On the other hand, a complete treatment of this magnetic case would neces-
sitate the incorporation of nonlinear effects such as magnetic saturation. The means for
such calculations will become clear, however, once we establish here the possibility of fully
accounting for the linear magnetic interactions, as these calculations could be iterated to
explore the nonlinear regime. In any case, these considerations and those pertaining to other
possible extensions (Stokes equations, three-dimensional geometries, models of rheological
response, other higher order effects, etc) will be left for future work.

2 Equations of Motion

2.1 Governing Forces and Equations

In this section, we derive the equations of motion for circular particles in IR? in the presence
of an external magnetic field Hy. The motion of the kth particle is described by Newton’s
second law of motion

d*x;,

= F, (2.1)

My,
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subject to the initial position and velocity
%) = %,(0) and V) = v(0), (2.2)

where My is the mass, X is the center, and F} is the total force acting on the kth particle,

which occupies the region ;. Contributions to F} arise from several sources, namely (see
e.g., Klingenberg et. al. [1989], Parthasarathy & Klingenberg [1996] and Mohebi, Jamasbi
& Liu [1996]):

¢ Magnetic Forces

The magnetic force on 2 can be calculated from the local field H with the aid of
the Maxwell stress tensor oM2* = i uo[HHT — $/H[?6], (6=unit tensor, ug, po = the
permeability for the kth particle and the carrier oil, respectively) as
. 1
Fpo8 = / oMax .7 ds, (2.3)
2mpo Jagq,

where 11 is the unit normal vector on 9.

¢ Hydrodynamic Forces
For small Reynolds number, the hydrodynamics can be decoupled from the magneto-
static problem and can be approximated by the Stokes’ drag (see Batchelor [1967] pp.
244 for details). Indeed, the hydrodynamic force can be approximated using Oseen’s
equations for flow due to a moving body at small Reynolds number as

dXy,

~hydro
FY"° = -D—=. 2.4
For circular cylinders for instance, the Stokes drag coefficient D is given by D = 1:;??4

per unit length. Here 7. is the carrier oil absolute viscosity and Re is the Reynoll(%ies
number. Formulation (2.4) has been widely used to approximate the hydrodynamic
force in dynamic simulations for both MR and ER fluids (see, e.g., Klingenberg et.
al. [1989], Hass [1993] and Mohebi, Jamasbi & Liu [1996]).

¢ Repelling Forces

In our simulations, we shall assume that both the particles and the container walls
are “hard”. To approximate this regime, we shall follow the work of Klingenberg et.
al. [1989] and Mohebi et. al. [1996] and propose that a “repelling force” acts on the
kth particle as it approaches others or a wall of the container. A simple model for
such a force is given, for instance, by

M
N _ . _ ’wall
FiP = —pup HYRY Trie Bldul _ iy ppHGR e Bld; |, (2.5)
=1
where M is the total number of particles, Hg is the intensity of the applied magnetic
X;— X
field, R is the radius of the particle, 3 > 0 is the repelling parameter, ¥y = %,
X; — X,

di = dist(Qg, Q). The wall repelling force uses Mg, an outward unit normal vector
at a point p on the boundary of the container {2 where p is closest to X on 0f2, and
|dyall| = dist(Qk, dQ). Other models, including polynomial forms, have been studied
by Klingenberg et. al. [1989].
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2.2 Dimensional Analysis

Our simulations will proceed on the non-dimensionalized equations of motion which we now
derive. Let us begin by denoting the dimensionless variables with an asterisk and performing
the following scalings in equations (2.1)-(2.2)

X = RX*,
t=T1t* 7 is the scaling time,
F’l;cnag — Fvics1}’1};1?121%0«7 F]f _ ,MngR,
= = _ vall
F.P = FSF Fierr = -y M g e Aldul - gy o= Bl
—hydro DR dx;, DR dr e
F == ) T="TFs = ——=71 3"

T dt* k pylog 52 Hy

It then follows that
d*x; dx; = _
Grgpet = ~ g+ FEE P, (2:6)

where
MkR ppRZHg,uk

- Fgr? N 3272[log %}]2772

Gk

is a dimensionless constant and p, is the density of the particle per unit length. For the
MR fluids we seek to model, the particles are basically composed of iron with diameters of
3 to 5 microns and pur = 10% x pg. The carrier oil viscosity 1. = 0.01 — 0.1 Pa-s and the
applied magnetic flux ugHy = 0.001 — 0.1 Tesla, so that G, = 10~*. Thus the term on the
left of (2.6) is several orders of magnitude smaller than those on the right hand side, and

we therefore set it to zero. Consequently, the equations of motion (2.1)-(2.2) become

%
dr~

= FP*8" L and %) = ,(0). (2.7)

It is to be remarked that for MR fluids with characteristics as described above, the
thermal effects from the continuous phase molecules on the particles are quite small for
rapid field application (Mohebi et. al. [1996]). Therefore, the magnetostatic forces largely
dominate the Brownian forces. More precisely, the ratio of the Brownian force to the
magnetic force is approximately given by A = R%Z}:ZIZ” where K = 1.38 x 107%% Joules/K
is the Boltzmann’s constant and 7" = 298K is the opeorating temperature. In our case, this
ratio is of order 10~® which justifies our neglecting the effects of Brownian motion.

3 Magnetic Forces

Clearly, the main challenge with the model (2.7) consists of the calculation of the highly

oscillatory magnetic interactions {Fy *®"} . Indeed, an accurate estimation of such forces

demands the continuous knowledge of the local magnetic field. H as the particles rearrange
themselves, so that Maxwell’s equations must be resolved at each instant in time. More
precisely, let us consider Q C IR? which is filled with a non-magnetic viscous fluid and M
permeable circular particles 21,8, --, Q7. Then, since the electromagnetic time scale
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is much shorter than that of the motion itself, we may safely assume that the fields are
governed by the equations of magnetostatics, namely,

V-B=0, and VxH=1J, (3.1)

where J is the free current, H is the magnetic field and B is the magnetic induction. In our
case, the material constituents are isotropic and hence

B = B; + uoH = pH, (3.2)

where B; is the intrinsic induction caused by magnetization, g is the permeability of free
space and

L in the kth particle

po= { (3.3)

Lo in the carrier oil.

Notice that {uk}yzl are not necessarily identical and are substantially larger than pg,
(ftr ~ 2000p0). In general, uy is defined as a function of H to model magnetic saturation.
For moderate fields, however, pi may be accurately approximated as a constant and we
shall take this as our working assumption. Moreover, for the composites we consider, no free
currents are present in the domain. Thus the second equation in (3.1) becomes V X H=0
which, in turn, implies that the magnetic field can be written in terms of a scalar potential

s, .
H=-Vo. (3.4)

As a result, equations (3.1)-(3.4) can be simplified to
V- (uVé) =0, (3.5)

with p given by (3.3) and g, po constant. Note that (3.3) implies that equation (3.5) has
highly oscillatory coefficients. Also, of course, equation (3.5) encodes the continuity of the

—

magnetic potential ¢ and of the normal component of B. That is, for any £ = 1,2,..., M,
lim = im ¢ 3.6
o é)chb(p) Mo (p) (3.6)

pEQ p € Qf

. 0o . 0¢

lim — = lim — 3.7
p B H g (p) b e M5, (p) (3.7)

pE p € Qf

where 7}, is an outward unit normal vector at p € 0Q and Q¢ = Q\ﬁk is the complement

of Q.

3.1 Integral Equation Formulation and Boundary Element Discretization

Although, as we said, the coefficients of equation (3.5) are rapidly changing in space, they
do remain constant in each . Thus the overall potential can be derived from appropriate
charge densities supported on the boundaries of the particles. These densities satisfy certain
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integral equations which are, in principle, amenable to solution by finite (boundary) element
approximation. As we shall discuss below (Sec. 3.2), the difficulties associated with the high
computational cost of classical boundary element approximation for this kind of problem
can, in fact, be overcome through the implementation of the Fast Multipole Method.

To derive the integral equations, let us denote by d€y the boundary of the domain Q
and impose the following Dirichlet boundary condition on 9

dlag, = 1. (3.8)

A potential ¢ satisfying (3.5)-(3.8) can be represented by single-layer and double-layer
integrals, see, e.g., Colton & Kress [1983] and Greengard & Moura [1994], in the form

Z/ (q)ds(q) + ?i(p, 9)&(q)ds(q), pe Q.  (3.9)

990 080, .q

Here, 7igq,,q is the outward unit normal vectors at ¢ € 9% and G(p,q) = 5~ L log|p — q| is

the fundamental solution of the Laplace’s equation in IR?. The functions n;’s on {9Q; }] =M
and £ on 0% are appropriate (unknown) surface densities. Note that the potential qb in
(3.9) automatically satisfies

Ap=0 onp fork=0,1,.... M,

and the continuity condition (3.6) at the interfaces. In this regard, we remark here that
our representation of the potential ¢ differs from the standard one described in most of the
pertinent literature. Indeed, while a standard representation would involve both single- and
double-layer potentials at each material interface, the formulation (3.9) implicitly guarantees
the continuity of the potential at particle-fluid boundaries. In addition, the use of a sole
double-layer integral on the exterior boundary ensures that the equations for n;’s and £ that
result from (3.7)-(3.8) constitute a system of Fredholm equation of the second kind. In fact,
using the jump relations of potential theory (see, e.g., Jaswon [1977] and Colton & Kress
[1983]), we obtain from equations (3.7)-(3.8) the following system of integral equations,

G(p,q)ni(q)ds(q)

J G
07k p Jag, 010, ,q

+22/ (q)ds(q) +2

M
—2A —
kp) k; g, O

=2

(p,0)é(q)ds(q) = 0, (3.10)

(p,@)é(q)ds(q) = 2f(p), (3.11)

990 090, .4

Bk — Mo

and equations (3.10)-(3.11) hold for p € {9Q}M | and 9Qg, respec-
HE + Ho

where A\, =

tively.
Our approach to the solution of equations (3.10)-(3.11) (at any fixed instant in time)
relies on the inversion of their discretized version. To this end, we divide each boundary

{Q; }jj\io, including the exterior boundary, into N; disjoint elements {’y]l}j\;]l and we denote
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by {p };le the midpoint of {7 }5\71 for j =0,1,---, M and N = ZMO N;. To derive the
approximate equations, we assume that the unknown densities {7}, and £ in (3.10)-(3.11)
are constant over each element, with collocation taken at the midpoints. That is,

[yl U(p,q)o(q)ds(q) = o(p}) [yl U(p, q)ds(q)

for p being either n; or £ and U being one of the kernels in (3.10)-(3.11). Thus, denoting
77§ = nj(pé) and ¢ = £(ph), equations (3.10)-(3.11) can be transformed into a matrix
equation

(I—}—MN)UN = Fun. (3.12)

Here, I is the N x N identity matrix,

A B ) : 0 1<i<N
M = U = — FZ = . ~ - ~
N lc D]’ N [5] N {Qf(pg) N +1<i<N+ N,

where N denotes E]]\il N;,

7 77% &
T U - | ¢
o=| |, =] | fori<k<ym, £=| 7 |,
™M mjjk fNo
]
Av(pl) = -3 34 / - “’kd “(a), (3.13)
j= 11 1 / pk
BEG) = <2306 [, =L loalhi — glds(a). (3.14)
T =1 ’)/ 871ka8

Q
=
i)
N

I

—sz/ log [y — qlds(q), (3.15)

]111

DéGh) - 136 [, %d (@) (3.16)

[ Yo 7o

3.2 Numerical Implementation

To solve for Uy in (3.12), we use an iterative method, namely GMRES (Generalized Mini-
mal RESidue). As an iterative solver, GMRES demands the repeated calculation of products
(I+My)Uy. The matrix My in our linear system (3.12) is fully dense so that multiplica-
tion of My and Uy would require O(N?) operations. However, as we describe below, by
exploiting the physical nature of the underlying magnetostatic problem it is possible to ac-
curately approximate these matrix vector multiplication by a procedure, the Fast Multipole
Method (FMM), whose operation count is only of O(N log V).
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The FMM algorithm was introduced in Rokhlin [1985] for rapid solution of integral
equations in potential theory and later extended by Greengard & Rokhlin [1987] to fast
evaluation of Coulombic interactions in large-scale systems of particles. A typical calculation
of the field at a given point due to a distribution of N charges (MxyUy, in our notation)
can be broken into two parts, the far field and the near field calculations. However, since
the Coulombic potential decays rather slowly (logarithmically), the far-field calculation
must, in principle, account for all interactions among the particles and, consequently, the
number of operations for calculating the field is O(N?). The goal of the fast multipole
method is to reduce this number of operations while accounting for all interactions and
maintaining any desirable order of accuracy. To achieve this, the basic strategy consists
of clustering the charges at different spatial lengths to allow for the computation of the
interactions between clusters by using multipole expansions. Near-field interactions are
computed directly. This systematic process is the key ingredient in reducing the number of
operations in the numerical matrix-vector multiplications. Complete details of the FMM
algorithm can be found in Greengard [1988]. For other applications and implementations
of the FMM see also Rokhlin [1985] [1990], Greengard & Rokhlin [1987] [1989], Greengard
& Gropp [1990], Greengard & Strain [1990], Engheta et. al. [1992], Murphy et. al. [1993],
Greengard & Moura [1994], Jones et. al. [1994], McKenney et. al. [1995], and Greengard
& Kropinski [1999].

3.3 Error Analysis

In this subsection, we present a simple error analysis for the solution of the boundary
element method discussed in the previous subsection. Since we employ the midpoint rule
for all the quadratures, the order of convergence is expected and will be shown to be at
least quadratic. Let us start with a system of integral equations (I + M)U = F where
U,F € L*T)and M : L*T) — L%*T) is a compact operator (the L?(T')-topology can, of
course, be substituted by others depending on the regularity of U). We assume M takes
the following form

MU(p) = /F K(p,q)U(q)dg.
Also, the discretized boundary integral equations can be written as an N X N system
(I—I— AJN)UN = Fy

with the midpoint collocated right-hand side [F]; = F(p;) for 1 < ¢ < N, where the p;’s
are the midpoints of the segments {I;}V,, so that [(1 + M)U](p;) — (I + My)Un = 0. By
defining (PnU); = U(p:)X{p;}, We have

(I + Mn)(Un — PnU)= PNMU — My PyU. (3.17)
For sufficiently smooth boundaries and M compact, it can be shown that (see Kress [1989])
(1 + Mn)""| 2,2y < K, independently of N, (3.18)

It follows from (3.17) and (3.18) that

HUN — PNU”p < CllCHPNMU — ZWNPNUHp, (3.19)
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for N > 0. Let £ = PyMU — My PynU denote the locally truncated error at p. Since we
are using the midpoint quadrature rule, for p away from the midpoints

N
|E(p)|;z = |/FK(P7 QU (q)dg =Y K(p,p)U(pi)ITs] |2 < O(N72),

=1

which implies

|Uyx — PxUljie < CoK N2,

For p = p;, we compute / K(pi,q)U(q)dq exactly (see Greengard and Moura [1994]).

4 Numerical Results

In this section, we first describe the physical regime and parameters for the dynamic simu-
lations of five MR fluids. We then discuss our results and quantify the magnetic responses
based on their time scales and effective permeabilities.

4.1 Microstructure Evolutions in MR Fluids

The dimensions for the rectangular domain that we consider for dynamic simulation are
Ly x Ly =0.237Tmm x 0.1mm. We assume that all particles are circular, initially centered
randomly at {X;}M,. We consider five samples of MR fluids, corresponding to 5%, 10%,
15%, 20% and 30% volume fractions. There are 170, 341, 511, 682, and 1024 particles
for the respective samples. In addition, we assume the following physical parameters in our

simulations:
Radius R = 1.5 micrometers
Fluid Density po = 10° kg/m3
Particle Density p="T7Xpo
Fluid Permeability po = 41077 N/A?
Particle Permeability pr = 2000 X pg.
Viscosity 7. = 0.1 Pas
Applied Field Hy=7.96FE4 A/m (uoHo = 0.10 Tesla).

The repelling parameter in (2.5) and the Reynolds number are assumed to be 40 and 0.01,
respectively. For the boundary conditions on the rectangle, we assume ¢ satisfies

Hol, 0<z< 1l y=0
HoLy(l—Li) Osys<ly z=Lls
oz, y) = o 0 << Ly, y=1, -
HoLy(l—Li) 0<y<ly z=0.
Yy

The results for the dynamic simulations for 10%, 20% and 30% volume fraction MR fluids
are displayed in Figures 1-3 respectively.
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Figure 1: dynamic simulations for MR fluid with 10% volume fraction.

Based on these results, we observe that, at first, particles form short fragmented chains
in the direction of the applied field. Subsequently these short chains merge together and
form longer chains. As time progresses further, these chain-like clusters continue to lengthen,
align and approach a steady state. We also observe that the time for the columnar structures
to form and the particle volume fraction (¢) of the sample are inversely related.

4.2 Quantifications of Microstructure Evolutions

Recent experimental work has been conducted to indirectly measure the microstructure
response in MR fluids using real-time permeability measurements (Jolly et. al [1997]) and
analogously in ER fluids using permitivity measurements (Blackwood et. al. [1994]). In
both cases, experimental data were fitted with exponential functions in an attempt to
identify the time constants ¢; for microstructure formation. A theoretical estimate of such
constants can be easily derived by consideration of the time response of a pair of point
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Figure 2: dynamic simulations for MR fluid with 20% volume fraction.

dipoles within a viscous fluid; this results in (Jolly et. al [1997])

ST+ Cy (4.2)

with n = 5/3. In this subsection, we undertake a numerical study of these time scales.
Following the experimental procedure, we first derive values for such constants from ef-
fective permeability calculations. Finally, we estimate similar constants from a different
macroscopic measurements, namely that of the “average kinetic energy.”

We begin by examining the evolution of the effective permeability of the MR fluid as a
function of time. As we said, we do so with the expectation that the effective permeability
reflects the microstructure state within the MR fluid. The definition and the formulation
for the effective permeability, which is based on theory of homogenization (Jikov [1994]),
are derived in Ly et.al. [1998]. The effective permeability is defined as a matrix

H11 o f12
H21 22

Heff = [
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Time = 1.138 milliseconds

Wy 84 88 #80 &8 L T8 %E & I::E

Time = 1.691 milliseconds Time = 10.87 milliseconds

25 %

Time = 13.65 milliseconds Time = 15.52 milliseconds

Figure 3: dynamic simulations for MR fluid with 30% volume fraction.

where
beff < Vo(R) > = < p(%) V() >, (43)

and < - > denotes the spatial average. Using Green’s identity and the boundary conditions
(4.1), equation (4.3) yields explicitly

1 M
[ = — nzdS
H12 HoloL, ;(M Mo)/89k¢
and
1 M
L = + — / n dS
H22 = Mo HoloL, 1;:1:(’% No) angb y

Because the applied magnetic field is in the vertical direction, ji99 is a more relevant quantity
and we denote by i := jig9 the effective permeability reflecting the overall magnetic response
of the MR fluid. In Figure 4, we display the effective permeability as a function of time. We
remark that the effective permeabilities obtained from the dynamic simulations are roughly
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40-50 % smaller than those obtained from numerical and physical experiments in Simon et.
al [1998]. One reason we suggest pertains to the percolation limit of particle separation. As
pointed out in the study of Simon et. al [1998], the inter-particle distance plays a major role
in the effective permeability in MR fluids: the permeability increases as the inter-particle
distance decreases. For the two-dimensional case, it is necessary to allow the particle gap
to approach 1% of the particle radius in order to achieve values comparable to those of
experimental results. In our simulations, the gaps between particles were constrained to at
least 4% of the radius. One could allow the particles in our study to get closer to 1% of the

radius by refining the boundary integral element which, of course, would lead to prolonged
computing time.

Exponential Approximation: mu(t)=A*(1—exp(—p)+C

2.8 \ \ ‘ ‘
2.6 b
%2.4* b

€22 30% V.F.;A=0.7;£0.0025; C=2.01 ‘ 1
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sec

Figure 4: Least square fitting (line) on the computed effective permeability (star) and the
time scale #; (solid square)

Figure 4 shows that the values of the effective permeabilities elevate faster for samples
with higher concentration of iron. To identify the time-scales that correspond to this behav-
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Figure 5: Time scale t; obtained from effective permeability and its least-square fitting for
the power law (4.2)

ior, we perform an exponential fit to a function of the form g(¢) = A (1— e.rp(—%)) + C for
each of the considered samples. The values of the time-scales #; for the respective volume
fractions are displayed in Figure 4 by the large solid squares. To determine the dependence
of the time scale #; on the volume fraction ¢, we use equation (4.2) to fit the data in Figure
4 to find that n ~ 1 (see Figure 5). In this regard, our experiments indicate that the value
of the power n is rather insensitive to the initial configuration of the system.

Finally, motivated by the observation of initial rapid particle motion and subsequent
slow rearrangement, we have monitored the evolution of the average particle kinetic energy
E(t) as another macroscopic measure of microstructure changes. For this we define F(t) =

TMV(t)* where M is the particle mass and V(t) is the average velocity,

M |- .
Vi - L > R4(0) = %t A0

Figure 6 displays the average particle kinetic energy F(?) and confirms that E(t), associated
with the motion of the particles, decays at a rate that depends on the volume fraction. An
exponential fit in time E(t) = A exp(—t/t1) + C as in the previous case reveals that
{t1} is approximately proportional to ©~33/3 This is in remarkable agreement with the
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1o Average Kinetic Energy Approximation: E(t)=A*exp( )ﬁtC

1.5r ’ 30% VF; A=1.5e-11, 1=0 0021; C=1.6e-13 7

E(t)

O
1Q.Ol 0. 02 0. 03 0.04 005 0.06 0.07 0.08 0.09
T T T Sec\ T T T T
1.5- ’ —— 20% VF; A=1.2e-11; £0.0051; C=2.4e-13 7
g f
0.5 J
_19 01 002 0.03 004 0.05 0.06 007 0.08 0.09
T T SeC\ T
1.5- ’ —— 15% VF; A=8.7e-12; £0.0061; C=8.6e-13 7
g 1 |
0.5

0
0 _1901 002 003 0.04 005 0.06 0.07 0.08 0.09
x1

T T Sec\ T
1.5- ’ —— 10% VF; A=5.3e-12; £0.017; C=3.1e-13 7
g e |
0.5

O r e
010_19.01 0.02 0.03 0.04 0.05 006 0.07 0.08 0.09
X

T T SeC‘ T
1.5- ’ — 5%VF; A=2.7e—12;11=0.038; C=5.3e-13 7
E’ 1r i
0.5 » i
0 I T Tl n T ;s = r -
0 0.01 002 0.03 0.04 005 0.06 0.07 0.08 0.09
sec

Figure 6: Numerical simulation kinetic energy E(t) (star), its least-square approximation
(line) and the time scale #; (solid square).

experimental measurements Blackwood et. al. [1994] and Jolly et. al. [1997] who have
found n in (4.2) to be between 2/3 and 4/3.

5 Summary and Conclusions

We have presented a computational technique to perform particle dynamics simulations
of MR fluids upon application of an external magnetic field that, for the first time, fully
account for all linear (long-range) magnetic interactions. To calculate these magnetic forces
we solve a (highly oscillatory) magnetostatic problem at each instant in the evolution by
appealing to a Fast Multipole Method on a boundary integral formulation. Additional
hydrodynamic and repulsive forces are accounted for by Stokes drag and approximate hard-
sphere/hard-wall rejections, respectively. We have effectively used the resulting numerical



Simulations of Particle Dynamics in MR Fluids 17

Magnetic Time Responsel.:A * VolumeFraction™+C

*——k  Simulation Time Scale; Residue = 0.065268
o- - - o Approximated Time Scale; A=0.0017; n=1.1; C=-0.0046

0.05-

0.04- b

0.02-

0.01-

| |
0 0.05 0.1 0.15 0.2 0.25 0.3
Volume Fraction

Figure 7: Time scale t; obtained from kinetic energy and its least-square fitting for the
power law (4.2)

code to study a number of crucial experimental observables (effective permeability, response
time scale) and have found our results in good agreement with experimental data.
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